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Abstract — We describe a space and time
adaptive modified FDTD method based on wavelet
transforms. The multiresolution structure of
wavelet bases provides a simple way to adapt com-
putational refinements to the local regularity of
the electromagnetic field. Additionally a novel al-
gorithm is presented that modifies the time dis-
cretization at each resolution.

I. INTRODUCTION

The FD'TD method is arguably one of the most signif-
icant breakthroughs in the history of modern compu-
tational electromagnetics. The reason for its popular-
ity is the extreme simplicity and yet unrivaled mod-
eling capabilities for general EM structures with arbi-
trary material properties. However, the FDTD scheme
suffers from limitations due to the substantial com-
puter resources required to model EM problems with
medium or large computational volumes. One way to
overcome these limitations are adaptive discretizations
in space (Spatially Adaptive Grids - SAG) as well as in
time (Adaptive Time Steps - ATS). The wavelet trans-
form plays an important role in these adaptive algo-
rithms. In 1996 Krumpholz and Katehi have presented
their Multiresolution Time Domain (MRTD) method
{1]. In the same year Werthen and Wolff published an-
other approach based on a transform with compactly
supported Daubechies-Wavelets [2]. We will follow this
approach in terms of the spatial adaptivity, since it
yields a stable multiscale algorithm. The next step
to even more adaptivity is the above mentioned ATS
scheme. One approach for the 1D MRTD scheme,
published by Tentzeris et al. [3], is using a wavelet
transform with respect to time. This yields a real-time
time-adaptive scheme. In our paper another approach
is presented that does not need a wavelet transform
with respect to time. The information from the spatial
transform is used to generate so-called Scale Adaptive

Time Steps (SATS). Since the discretization of the EM
field is the same as in the ordinary FDTD method and
we are using a wavelet transform to achieve the adap-
tive algorithms the technique is called a Wavelet based
Finite Difference Time Domain (WbFDTD) method.

II. THEORY OF THE SPATIALLY ADAPTIVE GRID

After the sampling of each field component within the
Yee-grid and the necessary discretization of derivatives
in Maxwell’s equations, we get the well-known FDTD
update equations for each field component, e.g. for
E (I, Az, LAy, L, Az, nAt):

E.(I,n) = E,(I,n — 1) Q)

At 0,1, — 03, 0,1 .
* g0 (1) Z Ay H,(la, iys1z,n — 1/2)

ty

At Oi, 0, —0i 0.1 .
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Eq(l,n) and H,(I,n — 1/2) are samples of field com-
ponents in nodes of the Yee-grid at time steps n At
and (n — 1/2) At, respectively. All samples of one
field component at a particular time step within the
three-dimensional computation domain are arranged
in a 3D-array denoted by bold and upright capitals,
e.g. E;(n) or H,(n — 1/2). With this notation the
above equation can be expressed as follows:

Bu(n) = Eu(n = 1) ®
+ o DIRyH.(n = 1/2)] - Ry[H, (n - 1/2)]]

R, is a matrix that has to be multiplicated with every
vector of H,(n — 1/2) which is oriented in z-direction
within this 3D-array. R, is a similar discrete opera-
tor (matrix) which operates in y-direction, i.e. per-
forms a discrete derivative of H,(n — 1/2) in y. The
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subindex y of R, is indicating the operation direc-
tion of this particular operator. D is the discrete ma-
terial operator that multiplies each entry of the 3D-
array [Ry[H,(n —1/2)] — R, [Hy(n - 1/2)]] (I) with
the value 1/e,.(I). This quite abstract way to write
down the update equation for E, is very approriate to
perform the next step, the discrete wavelet transform.
Every 3D-array with the sampled components and ev-
ery operator (R, R, and D) has to be transformed.
After this transformation the electromagnetic field is
expressed very efficiently by its wavelet coefficients.
We are not going into detail, but we will have at least
a brief look on the structure of the transformed field
components and operators. In the following density
plot (fig. 1) a wavelet-transformed two-dimensional
field distribution with nine different scales is depicted.
The coefficients in those scales are representing the

Fig. 1. Density plot of wavelet coefficients in 9 scales

field component on different resolution levels. In this
particular example there are three different resolutions
in x- and y-direction (jz,jy € {1,2,2}, to distinguish
between the "highest" wavelet space and the scaling
function space, the corresponding scale parameter of
the scaling function space is overlined). In fig. 2 the
structure of a wavelet transformed derivative opera-
tor is depicted. This matrix represents a three-scale
derivative operator for 128 elements. The size of 128
Yee-cells in one direction is typical for recent applica-
tions. The operator elements that are larger than a
threshold of 1/1000 are marked with a black square.
‘We can see that the operator is a sparse matrix. There-

fore there is a high potential of using sparse matrix
methods.

Fig. 2. Derivative Operator for vectors with 128 elements
and 3 scales

The transformed update equation now looks like this:

E;(n) = E;(n—1) @)
At = [~ =~ =

+ =D [Ry [ (n - 1/2)] - Raff, (n - 1/2)]

In terms of notation, every field component and op-
erator is marked with a tilde. Now we can use this
equation to update the wavelet coefficients of E, dur-
ing a simulation run. Let us suppose, g At is the cur-
rent time step. The coefficients of a field component
are compared with a threshold T(g). This threshold
is a part (e.g. 1%) of the current energy of this trans-
formed component. Furthermore each field component
has its own threshold function T(g). This feature has
advantages for example in the case with one or more
low-energy field component(s) (e.g. longitudinal com-
ponents of a TEM-like mode). The detection of small
wavelet coefficients for those components is then more
sensitve. For every following time step n, wavelet co-
efficients that are larger than the above mentioned
threshold T(g) of time step ¢ and all adjacent coeffi-
cients are considered, that means updated. The num-
ber of discrete time steps Ag = n — ¢ must be equal
or smaller than Ag¢mez = A8min/(UmazAt) in order to
track propagating waves with a speed of viaz. ASmin
denotes the finest discretization density. That means
it is sufficient to test for negligible coefficients every
Az time steps and to use this information for the
subsequent time steps.
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III. THEORY OF SCALE ADAPTIVE TIME STEPS

The main idea of the SATS scheme is to update the
wavelet coefficients with different time steps depending
on their scale-parameter. An important issue is to fig-
ure out the dependence of the time step on the scales.
For time being, the 1D case is considered and later on
the ideas are expanded to the 2D and 3D cases. The
FDTD Courant stability criterion simplifies then to:

Az

Umaz

At(Vo) = Atg = Atrprp = At < (4)
At(Vo) is the time step of the function space V, (sam-
pled and untransformed data). After the wavelet
transform of the electromagnetic field we get a mul-
tiscale representation of every field component. Any
of these scales (resolution levels) is interpretable as a
subgrid of the finest grid. One square in the first grid
in fig. 3 represents a Vj-coefficient (which is equal
to a sample value). The localization of the particular
square corresponds to the support of the basis func-
tion. The grid is designated by G(Vy), i.e., the grid
of the function space V;. Let us assume a one-step
wavelet-transform is applied to the data, then there
are two different scales. The finest grid G(Vy) is de-
composed into the subgrids G(V;) and G(W;). One
interpretation of the two different scales in subgrids
is depicted in fig. 3. A stability analysis yields the
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Fig. 3. Decomposition of G(Vp) into two subgrids

following scale adaptive time steps: For the coarsest
grid, G(V1), a longer time step (2At) can be used. In
G(W,) the high frequency information of the sampled
data must be detected, therefore the FDTD time step,
At, has to be taken. For the 1D case, in general, we
can use the following time steps in the scaling function

spaces V,, and wavelet spaces W,
24 Ay _TpAx

VUmaz Umaz
(v—1)
At,,=§2 szT"Ax=T,,At
Umaz Vmaz

Ty and T, are called scale adaptive time factors. By
applying these ideas to the 2D case we get the following
formula (3D analogous to 2D):

1
Vmaz V(275 /Az)2 + 20D/ Ay)?

Depending on the current time step the particular
scale is updated or not. Specifically this means, all
wavelet coefficients in one scale are updated with a
time step equal to the product T3 ; At. The above for-
mulas indicate that for the here considered 2D case
3/4 of all wavelet coefficients have to be updated with
the ordinary FDTD time step At. For the 3D case
the result is even worse. Here 7/8 of all coefficients
are updated with the smallest time step. We can con-
clude, there is only a moderate improvement caused
by the SATS scheme. But the combination of SATS
and SAG yields a efficient algorithm. The reason for
this hypothesis is as follows: The spatial wavelet trans-
form causes a data compression of the field samples.
Roughly speaking, a lot of the non-negligible coeffi-
cients are located in the "upper" scales (scales with
large scale parameters). High frequency field com-
ponents caused by fine inhomogenities are usually lo-
cal, therefore the corresponding wavelet coefficients in
"lower" scales (HF-coefficients) are also locally dis-
tributed around those inhomogenities. All in all we
find that SAG generates more coefficients in scales
with longer scale adaptive time steps than in HF-scales
with the smaller steps (especially for a non-modulated
gaussian pulse as field excitation). In other words
SATS complements SAG very well. Therefore we need
the combination of SATS and SAG to have the best
performance.

Aty <

(6)

IV. REsuLTs

First of all, the implementation of SAG and SATS
schemes in our WbEFDTD simulator is not that effi-
cient. For example the implementation of SATS is for
simplicity based on single grid points (wavelet coeffi-
cients). A much better implementation would be scale-
wise, i.e., if one scale does not need to be updated, all
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coeficients in that scale can be skipped at once. But
our aim for this paper was just to present the novel
SAG/SATS combination. The efficient implementa-
tion (maybe for a commercial FDTD-Simulator) of the
concept is the aim for the near future.

For the spatial wavelet transform we used Daubechies-
Wavelets with 4 or 6 (in the future up to 18) filter coef-
ficients. In this paper we want to consider a microstrip
meander line test strucure (fig. 4).

Fig. 4. Microstrip meander line (w = 610pm) on a 25 mil
(6354m) alumina substrate with ¢, = 9.98.

The field distribution of E, directly below the metal-
ization is depicted in fig. 5 at a time step when the
gaussian pulse has reached the end of the filter struc-
ture.

100
z/Az 120 750

Fig. 5. Sampled field component E, at the time 600 At

In fig. 6 we have a look on the distribution of the
wavelet coefficients of that field component. The
transform has two scales in x- and y-direction as one
can see in the plot. The coefficients in the base scale
(z/Az < 64 and y/Ay < 32) are updated with a larger
scale adaptive time step. We built the filter and mea-
sured the amplitude of s21(f) to compare it with the

10
z/Az 120350

Fig. 6. Wavelet coefficients of E, at the time 600 At

simulated values and we found good agreement be-
tween measurement and simulation. For an accurate
calculation of 891 (f) the simulation has to be contin-
ued until nearly no electromagnetic energy is within
the filter structure. In our example the energy was
absorbed at around the time step 5000. But the main
gaussian pulse has already left the computational do-
main after 1600At, i.e., for the period 1500At up to
5000At only a small amount of energy is saved in the
structure. Especially during this quite long time, com-
pared to the whole execution time, the adaptive sim-
ulator is very efficient, since only a few non-negligible
wavelet coefficients {(compared to the number of sam-
ples) are necessary to express this low energy field.

V. CONCLUSIONS

With the here presented new combination of SAG and
the SATS scheme we found another approach to even
more adaptivity for EM time domain simulators. In
the future we will focus on a more efficient implemen-
tation of a WhFDTD simulator with the SAG/SATS
feature. All in all we are convinced that the combi-
nation SAG/SATS has a high potential to solve large-
scale problems efficiently.
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