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Abstract — We describe a space and time

adaptive modified FDTD method based on wavelet

transforms. The multiresolution structure of

wavelet bases provides a simple way to adapt com-

putational refinements to the local regularity of

the electromagnetic field. Additionally a novel al-

gorithm is presented that modifies the time dis-

cretization at each resolution.

I. INTRODUCTION

The FDTD method is arguably one of the most signif-

icant breakthroughs in the history of modern compu-

tational electromagnetic. The reason for its popular-

ity is the extreme simplicity and yet unrivaled mod-

eling capabilities for general EM structures with arbi-

trary material properties. However, the FDTD scheme

suffers from limitations due to the substantial com-

puter resources required to model EM problems with

medium or large computational volumes. One way to

overcome these limitations are adaptive discretizations

in space (Spatially Adaptive Grids - SAG) aa well as in

time (Adaptive Time Steps - ATS). The wavelet trans-

form plays an important role in these adaptive algo-

rithms. In 1996 Krumpholz ad Katehl have presented

their Multiresolution Time Domain (MRTD) method

[1]. In the same year Werthen and Wolff published an-

other approach baaed on a transform with compactly

supported Daubechies-Wavelets [2]. We will follow this

approach in terms of the spatial adaptivity, since it

yields a stable multiscale algorithm. The next step

to even more adaptivity is the above mentioned ATS

scheme. One approach for the ID MRTD scheme,

published by Tentzeris et al. [3], is using a wavelet

transform with respect to time. This yields a real-time

time-adaptive scheme. In our paper another approach

is presented that does not need a wavelet transform

with respect to time. The information from the spatial

transform is used to generate so-called Scale Adaptive

Time Steps (SATS). Since the discretization of the EM

field is the same as in the ordinary FDTD method and

we are using a wavelet transform to achieve the adap-

tive algorithms the technique is called a Wavelet baaed

Finite Difference Time Domain (WbFDTD) method.

II. THEORY OF THE SPATIALLY ADAPTIVE GRID

After the sampling of each field component within the

Yee-grid and the necessary discretization of derivatives

in Maxwell’s equations, we get the well-known FDTD

update equations for each field component, e.g. for

EC(lZAX, lvAy, 1.Az, nAt):

EZ(l, n) = EC(l, n – 1) (1)

- ~~’iz”z ~$’’z-’HJL,lv,i~,n - 1/2)
&

E.(1, n) and HZ (J, n – 1/2) are samples of field com-

ponents in nodes of the Yes-grid at time steps n At

and (n – 1/2) At, respectively. All samples of one

field component at a particular time step within the

three-dimensional computation domain are arranged

in a 3D-array denoted by bold and upright capitals,

e.g. Em(n) or HZ(n – 1/2). With thk notation the

above equation can be expressed as follows:

E.(n) = EZ(n - 1) (2)

+ ~ D [~[H.(n – 1/2)] – RZ~V(n – 1/2)] ]

R= is a matrix that has to be multiplicated with every

vector of HV(n — 1/2) which is oriented in z-direction

within this 3D-array. RV is a similar discrete opera-

tor (matrix) which operates in y-dkection, i.e. per-

forms a discrete derivative of HZ(n – 1/2) in y. The
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subindex g of Rv is indicating the operation direc-
tion of this particular operator. D is the discrete ma-

terial operator that multiplies each entry of the 3D-

array [ ~[Hz(n – 1/2)] – Rz [Hv(n – 1/2)]] (t) with

the value l/c,(l). This quite abstract way to write

down the update equation for Ez is very appropriate to

perform the next step, the discrete wavelet transform.

Every 3D-array with the sampled components and ev-

ery operator (RV, R= and D) has to be transformed.

After this trsmsformation the electromagnetic field is

expressed very efficiently by its wavelet coefficients.

We are not going into detail, but we will have at least

a brief look on the structure of the transformed field

components and operators. In the following density

plot (fig. 1) a wavelet-transformed two-dimensional

field distribution with nine different scales is depicted.

The coefficients in those scales are representing the

Fig. 1. Density plot of wavelet coefficients in 9 scales

field component on different resolution levels. In this

particular example there are three different resolutions

in x- and y-direction (jr, jv c {1,2, ~}, to distinguish

between the “highest” wavelet space and the scaling

function space, the corresponding scale parameter of

the scaling function space is overlined). In fig. 2 the

structure of a wavelet transformed derivative operw

tor is depicted. Thk matrix represents a three-scale

derivative operator for 128 elements. The size of 128

Yee-cells in one direction is typical for recent applica-

tions. The operator elements that are larger than a

threshold of 1/1000 are marked with a black square.

We can see that the operator is a sparse matrix. There-

fore there is a high potential of using sparse matrix
methods.

Fig. 2. Derivative Operator for vectors with 128 elements

and 3 SCak?5

The transformed update equation now looks like this:

ii.(n) = tio(n – 1) (3)

+ :5 [~[fi.(n - 1/2)] - Rz[fiv(n - 1/2)]]

In terms of notation, every field component and op-

erator is mmked with a tilde. Now we can use this

equation to update the wavelet coefficients of Ez dur-
ing a simulation run. Let us suppose, q At is the cur-

rent time step. The coefficients of a field component

are compared with a threshold T(q). This threshold

is a part (e.g. lYo) of the current energy of this trans-

formed component. Furthermore each field component

has its own threshold function T(q). This feature has

advantages for example in the case with one or more

low-energy field component(s) (e.g. longitudinal com-

ponents of a TEM-like mode). The detection of small

wavelet coefficients for those components is then more

sensitve. For every following time step n, wavelet co-

efficients that are larger than the above mentioned

threshold T(q) of time step q and all adjacent coeffi-

cients are considered, that means updated. The num-

ber of discrete time steps Aq = n - q must be equal

or smaller than Aqmaz = Asmi./(vmozAt) in order to

track propagating waves with a speed of Vmaz. Asmin

denotes the finest dk+cretization density. That means

it is sufficient to test for negligible coefficients every

Aqm.. time steps and to use thk information for the

subsequent time steps.
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III. THEORY OF SCALE ADAPTIVE TIME STEPS spaces Vu and wavelet spacesW“:

The main idea of the SATS scheme is to update the

wavelet coefficients with different time steps depending

on their scale-parameter. An important issue is to fig-

ure out the dependence of the time step on the scales.

For time being, the ID case is considered and later on

the ideas are expanded to the 2D and 3D cases. The

FDTD Courant stability criterion simplifies then to:

Ax
At(VO) = At. = AtFDTD = At< —

vmaz
(4)

At(Vo) is the time step of the function space V. (sam-

pled and untransformed data). After the wavelet

transform of the electromagnetic field we get a mul-

tiscale representation of every field component. Any

of these scales (resolution levels) is interpretable as a

subgrid of the finest grid. One square in the first grid

in fig. 3 represents a Vo-coefficient (which is equal

to a sample value). The localization of the particular

square corresponds to the support of the baais func-

tion. The grid is designated by G(VO), i.e., the grid

of the function space Vo. Let us assume a one-step

wavelet-transform is applied to the data, then there

are two different scales. The finest grid G(VO) is de-

composed into the subgrids G(V1) and G(W1 ). One

interpretation of the two different scales in subgrids

is depicted in fig. 3. A stability analysis yields the

I 1=

2Ax =+- AtX=2At<~

Fig. 3. Decomposition of G(VO) into two subgrids

following scale adaptive time steps: For the coarsest

grid, G(V1), a longer time step (2 At) can be used. In

G(WI ) the high frequency information of the sampled

data must be detected, therefore the FDTD time step,

At, hea to be taken. For the ID case, in general, we

can use the following time steps in the scaling function

y & Tp Ax
Atp=<—=— = Tfi At

‘l&az v~~z
(5)

Atv = <
2(u-1) Ax Tv Ax

=—=Tv At
vmaz Vmaz

Tp and Tv are called scale adaptive time factors. By

applying these ideas to the 2D case we get the following

formula (3D analogous to 2D):

.
Ati,l <

Vm.z ~(2-k/Ax;2 + (2@-0/4/)z
(6)

Depending on the current time step the particular

scale is updated or not. Specifically this means, all

wavelet coefficients in one scale are updated with a

time step equal to the product Tz,l At. The above for-

mulas indicate that for the here considered 2D case

3/4 of all wavelet coefficients have to be updated with

the ordinary FDTD time step At. For the 3D case

the result is even worse. Here 7/8 of all coefficients

are updated with the smallest time step. We can con-

clude, there is only a moderate improvement caused

by the SATS scheme. But the combination of SATS

and SAG yields a efficient algorithm. The reason for

this hypothesis is as follows: The spatial wavelet trans-

form causes a data compression of the field samples.

Roughly speaking, a lot of the non-negligible coeffi-

cients are located in the “upper” scales (scales with

large scale parameters). High frequency field com-

ponents caused by tine inhomogenities are usually lo-

cal, therefore the corresponding wavelet coefficients in
I!lowerll sc~es (HF-coefficients) are i_dso 10callY dis-

tributed around those inhomogenities. All in all we

find that SAG generates more coefficients in scales

with longer scale adaptive time steps than in HF-scaJes

with the smaller steps (especially for a non-modulated

gaussian pulse as field excitation). In other words

SATS complements SAG very well. Therefore we need

the combination of SATS and SAG to have the best

performance.

IV. RESULTS

First of all, the implementation of SAG and SATS

schemes in our WbFDTD simulator is not that effi-

cient. For example the implementation of SATS is for

simplicity based on single grid points (wavelet coeffi-

cients). A much better implementation would be scak-

wise, i.e., if one scale does not need to be updated, all
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coefficients in that scale can be skipped at once. But
our aim for thk paper was just to present the novel

SAG/SATS combination. The efficient implementa-

tion (maybe for a commercial FDTD-Simulator) of the

concept is the aim for the near future.

For the spatial wavelet transform we used Daubechies-

Wavelets with 4 or 6 (in the future up to 18) filter coef-

ficients. In this paper we want to consider a microstrip

meander line test strucure (fig. 4).

Fig. 4. Microstrip meemder line (w = 610pm) on a 25 mil

(635pm) alumina substrate with e, = 9.98.

The field distribution of .EZ directly below the metal-

ization is depicted in fig. 5 at a time step when the

gaussian pulse has reached the end of the filter struc-

ture.
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Fig. 5. Sampled field component E, at the time 600 At

In fig. 6 we have a look on the distribution of the

wavelet coefficients of that field component. The

transform has two scales in x- and y-direction as one

can see in the plot. The coefficients in the base scale

(x/Ax <64 and y/Ay < 32) are updated with a larger

scale adaptive time step. We built the filter and mea-

sured the amplitude of SZ1(~) to compare it with the

Fig. 6. Wavelet coefficients of E. at the time 600 At

simulated values and we found good agreement be-

tween measurement and simulation. For an accurate

calculation of S21(f) the simulation has to be contin-

ued until nearly no electromagnetic energy is within

the filter structure. In our example the energy was

absorbed at around the time step 5000. But the main

gaussian pulse has already left the computational do-

msin after 1500 At, i.e., for the period 1500At up to

5000At only a small amount of energy is saved in the

structure. Especially during this quite long time, com-

pared to the whole execution time, the adaptive sim-

ulator is very efficient, since only a few non-negligible

wavelet coefficients (compared to the number of sam-

ples) are necessary to express this low energy field.

V. CONCLUSIONS

With the here presented new combination of SAG and

the SATS scheme we found another approach to even

more adaptivity for EM time domain simulators. In

the future we will focus on a more efficient implemen-

tation of a WbFDTD simulator with the SAG/SATS

feature. All in all we are convinced that the combi-

nation SAG/SATS has a high potential to solve large-

scale problems efficiently.
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